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Physics	
  610:	
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  5 
 
 
Due date:  Friday, May 1, 5pm in or outside WIL 372.  
 
1 Loops in random walks (3 pts.). You’ve seen, in the Physical Biology of the Cell excerpt, the 
probability distribution p(R ; N) for the end-to-end distance (R) of a three-dimensional random walk 
polymer of N segments (Eq. 8.23).  
(a, 2 pts.) Evaluate the probability that two points N links apart are separated by a distance δ or 

smaller. Consider  δ  N1/2a , so that the exponential in the integrand of your probability 
expression is approximately 1. 

(b, 1 pt.) As noted in class, clever experiments probing p(δ;N) for human chromosomes find 
p ~ N −1 . (See E. Lieberman-Aiden et al., Science. 326, 289-293 (2009); 
http://www.sciencemag.org/content/326/5950/289.full). There’s a nice schematic of the 
experiment in Figure 1. Note the discussion related to Figure 4. Is this finding consistent with a 
random-walk model? What do the authors speculate is advantageous about the observed 
conformation? 

 
 
2 Lipid bilayer viscosity (5 pts.). [Rewritten] Tristan images and tracks the motions of “domains” 
of different compositions in lipid membranes, from which he can infer the membrane’s viscosity. 
(Please see https://vimeo.com/124040405 for one of his movies.) The zipped file 
“DomainDiffusionData.zip” (In \Canvas\Random walks and diffusion) contains six files, each of 
which lists the positions of a domain. For each file, Row 1 is x, Row 2 is y, both in units of microns. 
The time between measurements is 0.0681 seconds. The domain radius, a, is given in the filename in 
microns, e.g. “Domain3_dt0.068_a0.83.txt” is a domain with a = 0.83 microns. 
(a, 2 pts.) Using your favorite programs from Homework #4, determine the diffusion coefficients 

(D) of each of these domains. Make a graph of D vs. a. (Hint: You should find D somewhere 
between 0.01 and 10 µm^2/s.) 

(b, 2 pts.) For the diffusion of an object of radius a in a two-dimensional liquid embedded in a 
three-dimensional liquid (such as a lipid membrane in water), D, the membrane viscosity ηm, and 
the external fluid viscosity ηw  are related by1 
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1 This expression holds for large ηm (or more precisely ηm / a ηw >> 1), and was first figured out by P. 
Saffman and M. Delbrück. Yes, that Delbrück! The classic paper: P. G. Saffman, M. Delbrück, Brownian 
motion in biological membranes. Proc Natl Acad Sci USA. 72, 3111–3113 (1975). 



Superimpose on your graph the theoretical D(a) curves, using the above equation, for ηm = {1, 3, 
10, 30} x 10-9 Pa s m (the SI units). Just by eye, estimate the “best-fit” membrane viscosity. 
(Note that you can’t simply invert the D equation above to solve for ηm. Also, the equation will 
behave badly for small ηm  – see the footnote. There’s a more general expression for arbitrary 
ηm, but it can only be expressed as a messy infinite series, not as a short equation.) 

(c, 1 pt.) You can divide a two-dimensional viscosity by a thickness to get something dimensionally 
equivalent to a three-dimensional viscosity. Do this with your answer to (b), using the typical 
thickness of al lipid bilayer. Find some three-dimensional liquid with a similar viscosity, to get an 
intuitive feeling for what a lipid bilayer is “like.” 

 
 
3 Runs, tumbles, and diffusion. (5 pts.) As we’ve seen, E. coli (and other bacteria) “run” with 
constant velocity v; the runs are punctuated by tumbles that randomize the direction. In the absence 
of a chemoattractant, the distribution of run times is a Poisson distribution with mean τ.  
(a, 1 pt.) Make a rough argument that the diffusion coefficient of this random walk of runs and 

tumbles has to be something like D ≈ v2τ  . 

(b, 1 pt.) We’ve discussed the Poisson distribution 
 
P(;µ) = µ

!
e−µ  , the probability of getting l 

counts for a Poisson process of mean µ. Explain why we can turn this into a probability distribution 
of tumble times (i.e. times between tumble events), given a mean time τ: 

 P(t;τ ) = τ −1 exp − t
τ
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Hint: Note that we’re looking for the probability of getting l=1 tumbles in some amount of time. 
(c, 3 pts.) Show that the diffusion coefficient of our random walk of runs and tumbles, in three 
dimensions, is: 

 D = 1
3
v2τ   

Also state what the answer would be in 2D. 
Hints: In 3D, note that if the mean step size is <L>, the mean step size in x is given by <Lx

2> = 
<L>2/3. Figure out from the properties of the Poisson distribution how <L2> and <L>2 are 
related. 
 
 
4 Runs, tumbles, and diffusion – part II. (8 pts.) As we noted in class, bacterial “runs” aren’t 
really straight paths, due to rotational diffusion. How does this influence the effective “D” of 
Problem 4? You can limit yourself to 2D if you want. 
Write a program to simulate bacterial runs and tumbles. Your bacterium should have some direction 
of motion θ, and some (constant) speed v, so that in time dt its “drift” will be dx = v cosθ dt, dy = v 
sinθ dt. Also during time dt, the bacterium undergoes translational Brownian motion (drawing dx 
and dy from Gaussian distributions of variance 2 D dt) and rotational Brownian motion (drawing θ 



from a Gaussian distribution of variance 2 Dr dt, as you saw in Homework 4). The tumble 
probability, for completely randomizing θ in the interval dt, is dt/τ.  
Using bacterial radius a = 1 micron, and v = 30 microns/second, “sample” your swimming 
trajectory at intervals separated by at least 2 τ for several hundred seconds. Do this for many 
bacterial trajectories. Use your homework #4 programs to calculate the effective diffusion 
coefficients for a range of τ values (including τ = 0.1, 1, and 10 seconds). What is the τ that gives the 
highest D? 
 
 
5 Chemotaxis in one dimension (6 pts.). (From Problem 49 of W. Bialek, Biophysics: Searching for 
Principles (Princeton University Press, Princeton, NJ, 2012), slightly modified.) As discussed in class, 
E. coli (and many other bacteria) navigate towards desirable regions by increasing their run lengths 
(i.e. decreasing their tumble probabilities) when the perceived rate of change of some attractant is 
positive. Can we turn this rough picture into a quantitative statement about how the bacterial density 
and the density of attractants are related? 
Let’s consider motion in just one dimension. We’d like to figure out the steady-state spatial 
distribution of bacteria given some concentration of attractant c(x)  that is not changing with time. 
The concentration is not changing with time. Denote the probability that a bacterium is moving to 
the right as P+ (x,t)  , and to the left as P− (x,t)  . (You can think of these as the concentration as 
rightward- and leftward-moving bacteria, if you want.) The bacteria move with speed v.  

 r( c)  is the probability of changing direction, which is a function of the perceived rate of change of 
the concentration: 

 
c = v ∂c

∂x
  (Think about why this has the form it does.) 

As we noted in class, we can write a differential equation for the rate of change of P+,-(x,t). 
Consider just an instant in time, space. All the change in P comes from particles “flipping” and so: 

 
 

dP+
dt

= − 1
2
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1
2
r(− c)P−   

(a) Explain why this equation has the form that it does. Write the corresponding equation for 
dP−
dt

 . 

(b) In general2, we can write 
dF(x,t)
dt

= ∂F
∂t

+ v ∂F
∂x

 . Using this, write expressions for 
∂P+
∂t

 and 

∂P−
∂t

. Considering the steady-state behavior of the system (i.e. no explicit change of either P+ or P- 

with time), write a differential equation for the total bacterial concentration P = P+ + P−  , and for 
ΔP = P+ − P−  . 

                                                
2 This is a “convective derivative,” also known as a Lagrangian derivative or material derivative. It separates the time 
derivative of F into an explicit time dependence and a contribution from the motion of x. (For example, if F is the 
temperature T of a fluid, there is a contribution to dT/dt from the “pieces” of the fluid moving with velocity v.) If 
you’ve never seen this, spend a few minutes looking at, for example, http://www.maths.bris.ac.uk/~majge/week2.pdf, 
or http://www.chem.mtu.edu/~fmorriso/cm4650/2012SubstantialDerivative.pdf. The latter has some examples. 



(c) Writing 
 
r( c) = r0 +

∂r
∂ c
c + ... ,  let’s assume we can just keep the constant and linear term (i.e. the 

tumble probability depends only linearly on the rate of change of the attractant). Note that the 
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∂ c   is a constant.  Derive a differential equation for P(x), and show that it is satisfied by  

 
 
P(x) = 1

Z
exp − ∂r

∂ c
c⎡

⎣⎢
⎤
⎦⎥

  

You may have to make some argument about what ΔP has to be. Note that you’ve shown that the 
bacteria a Boltzmann distribution, with the attractant concentration playing the role of energy!  
 


