Prof. Raghuveer Parthasarathy
University of Oregon; Spring 2015

Physics 610: Homework 5

Due date: Friday, May 1, 5pm in or outside WIL 372.

1 Loops in random walks (3 pts.). You've seen, in the Physical Biology of the Cell excerpt, the
probability distribution p(R; N) for the end-to-end distance (R) of a three-dimensional random walk
polymer of N segments (Eq. 8.23).

(a, 2 pts.) Evaluate the probability that two points N links apart are separated by a distance 0 or
smaller. Consider 6 < N'"a, so that the exponential in the integrand of your probability
expression is approximately 1.

(b, 1 pt) As noted in class, clever experiments probing p(Q;N) for human chromosomes find
p~N"'. (See E. Lieberman-Aiden et al, Sceme 326, 289-293  (2009);

http://www.sciencemag.org/content/326/5950/289.full). There’s a nice schematic of the
experiment in Figure 1. Note the discussion related to Figure 4. Is this finding consistent with a

random-walk model? What do the authors speculate is advantageous about the observed
conformation?

2 Lipid bilayer viscosity (5 pts.). [Rewritten| Tristan images and tracks the motions of “domains”
of different compositions in lipid membranes, from which he can infer the membrane’s viscosity.
(Please see https://vimeo.com/124040405 for one of his movies.) The zipped file
“DomainDiffusionData.zip” (In \Canvas\Random walks and diffusion) contains six files, each of

which lists the positions of a domain. For each file, Row 1 is x, Row 2 is y, both in units of microns.

The time between measurements is 0.0681 seconds. The domain radius, , is given in the filename in

microns, e.g. “Domain3_dt0.068_a0.83.txt” is a domain with « = 0.83 microns.

(a, 2 pts.) Using your favorite programs from Homework #4, determine the diffusion coefficients
(D) of each of these domains. Make a graph of D vs. a. (Hint: You should find D somewhere
between 0.01 and 10 pum”™2/s.)

(b, 2 pts.) For the diffusion of an object of radius « in a two-dimensional liquid embedded in a
three-dimensional liquid (such as a lipid membrane in water), D, the membrane viscosity 1, and

the external fluid viscosity 1, are related by'

k,T
D= B—|:ln(n—mj - j/:| , where y=0.5772... is Euler’s constant.
47, n.a

1'This exptession holds for large Nm (of mote precisely Nm / @ Nw >> 1), and was first figured out by P.
Saffman and M. Delbriick. Yes, that Delbriick! The classic paper: P. G. Saffman, M. Delbriick, Brownian
motion in biological membranes. Proc Nat/ Acad Sci USA. 72, 3111-3113 (1975).



Superimpose on your graph the theoretical D(a) curves, using the above equation, for nm = {1, 3,
10, 30} x 10” Pa s m (the SI units). Just by eye, estimate the “best-fit” membrane viscosity.
(Note that you can’t simply invert the D equation above to solve for Nm. Also, the equation will
behave badly for small Nm — see the footnote. There’s a more general expression for arbitrary
Nm, but it can only be expressed as a messy infinite series, not as a short equation.)

(c, 1 pt.) You can divide a two-dimensional viscosity by a thickness to get something dimensionally
equivalent to a three-dimensional viscosity. Do this with your answer to (b), using the typical
thickness of al lipid bilayer. Find some three-dimensional liquid with a similar viscosity, to get an
intuitive feeling for what a lipid bilayer is “like.”

3 Runs, tumbles, and diffusion. (5 pts.) As we’ve seen, E. co/i (and other bacteria) “run” with
constant velocity #; the runs are punctuated by tumbles that randomize the direction. In the absence
of a chemoattractant, the distribution of run times is a Poisson distribution with mean T.

(a, 1 pt) Make a rough argument that the diffusion coefficient of this random walk of runs and

tumbles has to be something like D = VT .
a

(b, 1 pt.) We've discussed the Poisson distribution P(/; )= %e_“ , the probability of getting /

counts for a Poisson process of mean [L. Explain why we can turn this into a probability distribution

of tumble times (i.e. times between tumble events), given a mean time T:
- t
P(t;T)=1 1exp(——)a’t
T

Hint: Note that we’re looking for the probability of getting /=1 tumbles in some amount of time.
(c, 3 pts.) Show that the diffusion coefficient of our random walk of runs and tumbles, in three
dimensions, is:

Also state what the answer would be in 2D.

Hints: In 3D, note that if the mean step size is <L.>, the mean step size in x is given by <> =
<I.>?/3. Figure out from the properties of the Poisson distribution how <I*> and <I>? are
related.

4 Runs, tumbles, and diffusion — part II. (8 pts.) As we noted in class, bacterial “runs” aren’t
really straight paths, due to rotational diffusion. How does this influence the effective “D” of
Problem 4? You can limit yourself to 2D if you want.

Write a program to simulate bacterial runs and tumbles. Your bacterium should have some direction

of motion 6, and some (constant) speed #, so that in time d7 its “drift” will be dx = » cos0 dt, dy = »
sin@ dt. Also during time 47 the bacterium undergoes translational Brownian motion (drawing dx

and dy from Gaussian distributions of variance 2 D dt) and rotational Brownian motion (drawing 0



from a Gaussian distribution of variance 2 D, dt, as you saw in Homework 4). The tumble

probability, for completely randomizing © in the interval d, is dt/T.

Using bacterial radius « = 1 micron, and » = 30 microns/second, “sample” your swimming
trajectory at intervals separated by at least 2 T for several hundred seconds. Do this for many
bacterial trajectories. Use your homework #4 programs to calculate the effective diffusion
coefficients for a range of T values (including T = 0.1, 1, and 10 seconds). What is the T that gives the

highest D?

5 Chemotaxis in one dimension (6 pts.). (From Problem 49 of W. Bialek, Bigphysics: Searching for
Principles (Princeton University Press, Princeton, NJ, 2012), slightly modified.) As discussed in class,
E. coli (and many other bacteria) navigate towards desirable regions by increasing their run lengths
(i.e. decreasing their tumble probabilities) when the perceived rate of change of some attractant is
positive. Can we turn this rough picture into a quantitative statement about how the bacterial density
and the density of attractants are related?

Let’s consider motion in just one dimension. We’d like to figure out the steady-state spatial
distribution of bacteria given some concentration of attractant c¢(x) that is not changing with time.
The concentration is not changing with time. Denote the probability that a bacterium is moving to
the right as P, (x,t) , and to the left as P (x,t) . (You can think of these as the concentration as
rightward- and leftward-moving bacteria, if you want.) The bacteria move with speed ».

r(¢) is the probability of changing direction, which is a function of the perceived rate of change of

the concentration:

c= vﬁ (Think about why this has the form it does.)
X

As we noted in class, we can write a differential equation for the rate of change of P, (x,).
Consider just an instant in time, space. All the change in P comes from particles “flipping” and so:

dP, 1 1
t=——r(¢)P. +—=r(—=¢)P
% - 2 (OP, > (=O)P.
dP
(a) Explain why this equation has the form that it does. Write the corresponding equation for d_t_ .
dF (x,t F
(b) In general’, we can write ﬁz a—+v— . Using this, write expressions for — and
dt o  Ox ot

oP

—— . Considering the steady-state behavior of the system (i.e. no explicit change of either P, or P

with time), write a differential equation for the total bacterial concentration P=P_+ P , and for

AP=P, —P. .

*This is a “convective derivative,” also known as a Lagrangian derivative or material derivative. It separates the time
derivative of I into an explicit time dependence and a contribution from the motion of x. (For example, if I is the
temperatute T of a fluid, there is a contribution to dT/dt from the “pieces” of the fluid moving with velocity v.) If
you've never seen this, spend a few minutes looking at, for example, http://www.maths.bris.ac.uk/~majge/week2.pdf,
or http://www.chem.mtu.edu/~fmorriso/cm4650/2012SubstantialDerivative.pdf. The latter has some examples.




(c) Writing r(¢)=r,+=-C+..., let’s assume we can just keep the constant and linear term (i.e. the

tumble probability depends only linearly on the rate of change of the attractant). Note that the
a%c’ is a constant. Derive a differential equation for P(x), and show that it is satisfied by

1 or
P [ — —
(x) 7 exp{ % c}

You may have to make some argument about what AP has to be. Note that you’ve shown that the
bacteria a Boltzmann distribution, with the attractant concentration playing the role of energy!



