4.2 Motility and Chemotaxis in Bacteria
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between the front and back of the bacterium is unlikely to be effective just on physical
grounds, independent of biological mechanisms. To test for a time-domain mechanism,
e can expose the bacteria to concentrations that are spatially uniform but varying in
wme; if the sign of the change corresponds to swimming up a positive gradient, runs
should be prolonged. The first such experiment used very large, sudden changes in
concentration and found that cells that experience large positive signals could became
tapped in extremely long runs. A more sophisticated experiment used enzymes to
synthesize attractants from inert precursors, exposing the cells to gradual changes
more typical of those encountered while swimming, Purely time-domain stimuli were
sufficient to generate modulations of run length that agree quantitatively with those
observed for bacteria experiencing spatial gradients.

of individual®
rals of erratit
1bles, respets
s sufficient {08
he bacterium
dom, and §0°
1n wete itsell

I Problem 49: Chemotaxis in one dimension. To make the intuition of the previous para-
graphs more rigorous, consider a simplified problem of chemotaxis in one dimension. There
At then two populations of bacteria, the + population that moves to the right and the — pop-
wlation that moves to the left, each at speed v. Let the probability of finding a + [—] bacterium
SEposition x be P, (x, 1) [P_(x, N]. Assume that the rate of tumbling depends on the time
derivative of the concentration along the bacterial trajectory as some function r(¢), where for
e & bacteria, we have ¢ = +vdc/dx, and that cells emerge from a tumble going randomly
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FIGURE 4.14

Two paths of Escherichia coli

as seen in the original tracking
microscope experiments. The
three panels in each case are
projections of the path onto the
three orthogonal planes (imagine
folding the paper into a cube
along the dashed lines). At left, a
wild type bacterium, showing the
characteristic runs and tumbles.
At right, a nonchemotactic
mutant that never manages to
tumble. Reprinted by permission
from Macmillan Publishers, Ltd.:
Brown and Berg (1972).
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Chapter4 Noise Is Not Negligible

Explain the meaning of each of the terms in terms of what happens as
emerge from tumbles. Note that in this approximation, tumbles themSQIVeS
which is pretty reasonable (0.1 s versus the ~1—10 s for typical runs),

(b) To see whether the bacteria really migrate toward high concey,
steady state of these equations. If we simplify and assume that the rate
lated linearly by the time derivative of the concentration,
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Thus, in these approximations, chemortaxis leads to a Boltzman
in which the concentration acts as a potential. If the molecules are Attractjy, .J.-‘
and hence maxima of concentration are minima of the potential, conversely f(;r el

stronger the modulation of the tumbling rate is (as long as we stayin oyy liHEara
the lower will be the effective temperature and the tighter the concentragjg, of bagg
the local maxima of concentration. q

n distrjbuﬁﬁ :

Problem 50: Nonlinearities, In the simplified one-dimensiona] world
you make progress without the approximation that r(¢) is linear? More
the form of the stationary distribution P (x) that solves Eq. (445)

r(€)? Can you show that there still is an effective potential with mi
the concentration is maximal?
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Problem 51: A little more about the effectiveness of chemotaxis,

(@) Ir the one-dimensional model, what happensif the tumb]
by the time derivative but also by the absolute concentration, so
“currently good” for “getting better”?
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(b) Can you generalize this discussion to three dimensions? Insteaq of
groups + and —, one now needs a continuous distribution P(R,x
the direction of swimming, Derive an equation for the dynamics of p
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All this description so far is about the phenomenology of SWimming, By
it actually work? The basic problem is that bacteria are too small to rgke
of inertia. When we swim, we can push off the wall of the pog] 4 glid
distance, even without moving our arms or legs; this gliding distancejs
of one or two meters, roughly the length of our bodies. In contrast,
Stops running its motors, it will glide for a distance comparabl
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Chapter4 Noise Is Not Negligible

Explain the meaning of each of the terms in terms of what happens as cells enter i
emerge from tumbles. Note that in this approximation, tumbles themselves are in,

Stantpen
which is pretty reasonable (0.1 s versus the ~1—10 s for typical runs). |

(b) To see whether the bacteria really migrate toward high concentrations, ok
steady state of these equations. If we simplify and assume that the rate of tumb| ing ig
lated linearly by the time derivative of the concentration,
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Thus, in these approximations, chemotaxis leads to a Boltzmann distribution of bye
in which the concentration acts as a potential. If the molecules are attractive, then g, /e
and hence maxima of concentration are minima of the potential, conversely for repellen
stronger the modulation of the tumbling rate is (as long as we stay in our linear approximaga
the lower will be the effective temperature and the tighter the concentration of bacteria arQ'
the local maxima of concentration.

Problem 50: Nonlinearities. 1In the simplified one-dimensional world of Problem 4
you make progress without the approximation that () is linear? More specifically, why
the form of the stationary distribution P(x) that solves Eq. (445) and Eq. (446) for nonling
r(¢)? Can you show that there still is an effective potential with minima located at places wht
the concentration is maximal?

Problem 51: A little more about the effectiveness of chemotaxis.

(a) Irrthe one-dimensional model, what h appensif the tumbling rate is modulated notj
by the time derivative but also by the absolute concentration, so that the bacterium confus
“currently good” for “getting better”?

(b) Can you generalize this discussion to three dimensions? Instead of having justii
groups + and —, one now needs a continuous distribution P(82, x,1), where Q denol
the direction of swimming,. Derive an equation for the dynamics of P(£2, x, t) in the si

approximations used above, and see whether the Boltzma nn-like solution obtains in this mo
realistic case.

All this description so far is about the phenomenology of swimming, But how dd
it actually work? The basic problem is that bacteria are too small to take advanti
of inertia. When we swim, we can push off the wall of the pool and glide for sof
distance, even without moving our arms or legs; this gliding distance is on the ofd
of one or two meters, roughly the length of our bodies. In contrast, if a bacterill
stops running its motors, it will glide for a distance comparable not to its body len§
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as cells enten

o diameter of an atom. To see this, think about a small particle moving
Ives are insgapy

biect only to drag forces (the motors are off). If the velocities are
jhejdrag will be proportional to the velocity, so Newton’s equation
trations, Jo! i

lf‘,vllﬂ = —YyUv. < (449)

dt

hiect of radius r, the Stokes formula tells us that y = émnr, where 5 is
.'ﬂuid, and we also know that m = 4mpr/3, where p is the density

he result is that

v(t) = v(0) exp(—t/7), (4.50)
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on of bacterig the density of bacteria is roughly that of water, then it is useful to
: units of a diffusion constant, and for water n/p = 0.01 cm?/s. With
em, this gives T ~ 5 x 1077 5. If the initial velocity is v(0) ~ 20 pm/s,
ent during this coasting is Ax = v(0)t ~ 10~ m; recall that a hy-

Y - diameter of ~1 A =100 m.

d of Problem n from such simple estimates is that bacteria can't coast. More gener-
e specificallyy n the scale of bacteria is such that inerta is negligible, as if Aristotle
) (446 o and Newton) were right. This phenomenon really is about the
cated at p

flow on this scale. For an incompressible fluid (which is a good ap-
re—surely the bacteria don't generate sound waves as they swim), the
quations are

9
p [a—‘; = v'Vv} — Vp + Vv, (4.52)

is modulatedn

e : i ; . . .
. bacterium e ¢ local velocity of the fluid, p is the pressure, and as usual p is the density

ity The pressure is not really an independent variable, but it needs to
¥ can enforce the condition of incompressibility,

), where Vv=0. (4.53)

tions need to be supplemented by boundary conditions, in particular,
/s with the same velocity as any object at the points where it touches
5, the velocity should be zero at a stationary wall and should be equal
IEa swimmer at the swimmer’s surface.
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nce is on derstanding Navier-Stokes. This is not a fluid mechanics course, but you
st iy You understand what Eq. (4.52) is saying, In particular, it is nothing but

a. Explain,
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Dimensional analysis is an enormously powerful tool in fluid mechanicg We s
free to choose new units for length (£) and time (fy), and hence for velocity (vo=pil
as well as for pressure p, and this gives us '

= 2
a V5. = - =9
@_Y Dy Vv | = ﬁp—OVp—l— qﬁvzv,
fo 0f ¢ 14 22
& v - O . =
00 —‘i+v-vv} =22 G54 V%, (45
n at nvg 3

where f =t/1y, ¥ =v/vy, and j = p/p,. Now we can set pol/nvy = 1, which gets ¢
of all the units, except we are left with a dimensionless combination '

which is called the Reynolds number.® Notice that if we choose the unit of lengg
be the size of the objects that we are interested in, and v, to be the speed at y
they are moving, then even the boundary conditions don't have any units, nor do e
introduce any dimensionless factors that are far from unity, The conclusion is thatg
fluid mechanics problems with the same geometry (shapes) are the same if they hag
the same Reynolds number. In this sense, being smaller (reducing £) is the sameg
living at increased viscosity”

To make a long story short, we live at high Reynolds number, and bacteria li
low Reynolds number (Fig. 4.15), even though we are surrounded by the same
when we swim. To simulate the effect of being as small as bacteria on the human scal
we would have to swim through a fluid whose viscosity is roughly that of concrete|i
before it sets (!). Turbulence is a high-Reynolds number phenomenon, as is the mof
mundane gliding through the pool after we push off the wall. At low Reynolds numbg
life is very different. Inertia is absent, and so forces must balance at every instantg
time. To say this more startlingly, if Re — 0, then time does not actually appear in th
equations. Thus, as you swim, the distance that you move depends on the sequenced
motions that you go through but not on the dynamics with which you execute them

6. L admit that I was at first puzzled by the convention that this is “Reynolds number,” not “Reynold
number” (and certainly not “Reynold’s number,” although one sees this from time to time). The numb
is named after Osborne Reynolds (1842-1912), who emphasized its importance, although it had
introduced much earlier by Stokes. If it belongs w Reynolds, you might think it should be “Reynok
number,” but we also refer to “Bessel functions” and not “Bessel’s functions.” In a discussion i
fascinared many of us in my student days, Jackson took the opportunity of a new edition of his Classid
Electrodynamics to explain that, following this convention, we should talk about “Green functions” i
not “Green’s functions” (this “boggles some minds,” he noted). The world of fluid mechanics abount
with such things—Prandtl number, Schmidt number, Nusselt number, Pécler number—all associa
with proper names but not with the possessive construction.

7. It is worth reflecting on the level of universality that we have here. We could imagine starting With
molecular description of fluids, then figuring out that, on the relevant length and time scales, all we
to know are the density and viscosity Now we see that even these quantities are tied up with our cho
units, If we want to know what happens in natural units (i.e, scaling to the size and speed of the objé!
of interest), then all that matters is a single dimensionless combination, Re.
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FIGURE 4.15
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QF‘: / 0 Purcells delightful sketch, illustrating the range of Reynolds numbers
relevant for swimming in humans, fish, and bacteria. Reprinted, with
permission, from Purcell (1977). Copyright © 1977, American Association
of Physics Teachers.

 Purcell’s evocative example, at high Reynolds number a scallop can propel
.sﬁapping shut, expelling a jet of water, and then opening slowly® The jet
ael the scallop forward, and the drag of reopening can be made small by
owly. At low Reynolds number this strategy does not work, and the forward
nt generated by snapping shut will be exactly compensated by the drag on
i To have net movement froma cycle, the sequence of shapes that the swimmer
hiough in the cycle must break time-reversal invariance, not just the trajectory.

ow do bacteria evade the “scallop theorem”? If you watch them swimming,

same if they]
£) is the samy ]
nd bacteria liw
by the samel
1 the human
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on, as is the m | see that they have long filaments sticking out, and these seem to be waving, I
Reynolds numi that “see” is tough here. These filaments are very small, ~20 nm in diameter,
t every inst yer than the wavelength of light. To see them, the easiest thing to do is

tk-field microscopy, in which the sample is illuminated from the side and
see is the light scattered by ~90°. These apparently waving appendages are
la, by analogy with the motile structures that project from eukaryotic cells,
ome of the cells in our own bodies. The difference is that eukaryotic flagella
| thicker than bacterial flagella. If you slice through the tail of a sperm (a
ample of a eukaryotic flagellum) and take an electron micrograph, you find
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to time). The nut ously complex structure; if you analyze the system biochemically, you find
al:th(ﬁglgl lf‘;;’ ¢ from many different proteins. Importantly, some of these proteins act as
snou €

and eat ATP, which we know is a source of energy, for example, in our muscles.
dition of ot t, the bacterial flagellum is small, with a relatively simple structure, and the
IStry suggests that it is little more than a very long polymer made from one
,pptgin; this protein is not an enzyme. How can this simple structure, with no
| e Achivity, generate motions?

ﬁfperimeuts aimed at better ways to see the flagella, one can attach “flags” to
WHUSINg viruses that would stick to the flagella by means of antibodies. Once in a
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